(4x^2+4x-5)+(-7x^2+8)=

Simple and best practice solution for (4x^2+4x-5)+(-7x^2+8)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2+4x-5)+(-7x^2+8)= equation:


Simplifying
(4x2 + 4x + -5) + (-7x2 + 8) = 0

Reorder the terms:
(-5 + 4x + 4x2) + (-7x2 + 8) = 0

Remove parenthesis around (-5 + 4x + 4x2)
-5 + 4x + 4x2 + (-7x2 + 8) = 0

Reorder the terms:
-5 + 4x + 4x2 + (8 + -7x2) = 0

Remove parenthesis around (8 + -7x2)
-5 + 4x + 4x2 + 8 + -7x2 = 0

Reorder the terms:
-5 + 8 + 4x + 4x2 + -7x2 = 0

Combine like terms: -5 + 8 = 3
3 + 4x + 4x2 + -7x2 = 0

Combine like terms: 4x2 + -7x2 = -3x2
3 + 4x + -3x2 = 0

Solving
3 + 4x + -3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-1 + -1.333333333x + x2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + -1.333333333x + 1 + x2 = 0 + 1

Reorder the terms:
-1 + 1 + -1.333333333x + x2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + -1.333333333x + x2 = 0 + 1
-1.333333333x + x2 = 0 + 1

Combine like terms: 0 + 1 = 1
-1.333333333x + x2 = 1

The x term is -1.333333333x.  Take half its coefficient (-0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
-1.333333333x + 0.4444444442 + x2 = 1 + 0.4444444442

Reorder the terms:
0.4444444442 + -1.333333333x + x2 = 1 + 0.4444444442

Combine like terms: 1 + 0.4444444442 = 1.4444444442
0.4444444442 + -1.333333333x + x2 = 1.4444444442

Factor a perfect square on the left side:
(x + -0.6666666665)(x + -0.6666666665) = 1.4444444442

Calculate the square root of the right side: 1.201850425

Break this problem into two subproblems by setting 
(x + -0.6666666665) equal to 1.201850425 and -1.201850425.

Subproblem 1

x + -0.6666666665 = 1.201850425 Simplifying x + -0.6666666665 = 1.201850425 Reorder the terms: -0.6666666665 + x = 1.201850425 Solving -0.6666666665 + x = 1.201850425 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + x = 1.201850425 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + x = 1.201850425 + 0.6666666665 x = 1.201850425 + 0.6666666665 Combine like terms: 1.201850425 + 0.6666666665 = 1.8685170915 x = 1.8685170915 Simplifying x = 1.8685170915

Subproblem 2

x + -0.6666666665 = -1.201850425 Simplifying x + -0.6666666665 = -1.201850425 Reorder the terms: -0.6666666665 + x = -1.201850425 Solving -0.6666666665 + x = -1.201850425 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + x = -1.201850425 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + x = -1.201850425 + 0.6666666665 x = -1.201850425 + 0.6666666665 Combine like terms: -1.201850425 + 0.6666666665 = -0.5351837585 x = -0.5351837585 Simplifying x = -0.5351837585

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.8685170915, -0.5351837585}

See similar equations:

| 15x^2=26x+21 | | 2x-3+4x=4x+5 | | 4x^3+1.2x^2+0.09x-327=0 | | x^2+2xy-y^2-3y+x=0 | | M-12=60 | | -5=3x-2-4x+1 | | -3x+7-2x-1=18 | | e^3x*lnx= | | 4q+3=5 | | (2xy-(tan)y)dx+((x^2)-x(sec^2y))dy= | | 98+(-99)+99+(-97)= | | 0.5(x+5)=4 | | (2xy-tany)dx+((x^2)-x(sec^2y))dy= | | (2xy-tany)dx+((x^2)-x((sec^2)y))dy=0 | | Y(2)+y(3)=5(6) | | -12+9+(-3)+6= | | h=16t^2+48t+160 | | 4a+3-2=2a+a+25 | | X(t)=3+sin(2t) | | 14+(-20)+39= | | 3x-2x+100=300 | | y=-4x^2+11 | | -13-9=-6 | | 7+42+(-17)= | | y=7x^2-14x+2 | | -3/4=-1/8 | | 8b+16=22 | | 11u=88 | | 95+86+85+x=360 | | -69=7y-6 | | (y+5.3)+(7.2y-9)= | | -3+12+(-13)= |

Equations solver categories